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Abstract

Rough set theory is commonly used to handle uncertainty in various applications. In order to
broaden its application scope, the classical rough set model based on equivalence relations, it
has been extended to include an additional partial order relation. This partial order relation rep-
resents anm-nano flou set, as defined in Section 5, between rough sets and is particularly useful
in determining the levels of impact that key factors have on heart failure. The primary objec-
tive of the current research is to introduce a novel approximation method based on equivalence
relations and partial order relations (ordered approximation spaces), which extends Pawlak’s
method and investigates related results. The paper establishes the equivalence between our ap-
proach and Pawlak’s approach under the condition that we have an equivalence relation and a
partial order relation that satisfies the criteria required for it to be considered an equality rela-
tion. The second objective is to extend the concept of nano topology to include nano ordered
topology, which involves nano increasing or decreasing topological spaces. The research indi-
cates that incorporating nano increasing or decreasing topological spaces results in enhanced
data analysis accuracy when compared to solely utilizing nano topological spaces. This obser-
vation aligns with the discussions in the referencedwork by Jayalakshmi in [16]. The findings of
this research have the potential to significantly impact medical research related to heart failure.
Improved methods for handling uncertainty and quantifying the influence of various factors
can lead to more accurate and reliable predictions and diagnoses. Ultimately, this work aims
to contribute to advancements in heart failure treatment and prevention. By bridging the gap
between traditional rough set theory and the nuanced intricacies of heart failure analysis, our
research strives to advance our comprehension of this critical medical condition and, in turn,
support progress in heart failure treatment and prevention.

Keywords: increasing (decreasing, boundary) lower (upper) approximations; nano ordered
topological spaces; m-nano flou set; decision making.
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1 Introduction

Rough set theory is a mathematical framework designed to address uncertainty by utiliz-
ing precise lower and upper approximation sets. These approximations precisely define the sets
within the minimal or maximal rough set, respectively. Originally introduced by Pawlak [30],
rough set theory extends conventional set theory to accommodate intelligent systems dealingwith
limited and incomplete data. Central to this theory is the concept of equivalence relations or par-
titions, which formalizes information granulation. Lower and upper approximations within an
approximation space are essential components for representing conceptswithin the given space or
information system. These approximations are instrumental in managing uncertainty and incom-
plete information, ultimately facilitating a more comprehensive comprehension of the concepts
in focus. Some of them used reflexive relations [3], similarity relations [4, 34], general binary
relations [20, 38], topological structures [29, 39], and coverings [41, 42]. Marei proposed some
different methods based on topological structures and neighborhoods to generalize Pawlak rough
sets in [22, 23]. On the other hand, Raafat [31] introduced and studied some methods based on
the ideal concept and topological structures to generalize the previousmethods such as[21]. Some
relationships between the rough set approach [30] and the other branches studied in [36, 37].

Topologists have leveraged the concept of relations to construct a comprehensive topology that
serves as a versatile mathematical framework applicable to any group interconnected through
these relations. We conclude that the relations have been entered to build topological structures
in a variety of fields such as in rough sets and their extensions [1, 3], roughmultisets [2], decision-
making problems [2, 11], medical applications [7, 8], bipolar soft ordered topology Demirtas [6],
economic fields [5, 10], topological reductions of attributes for predicting of a lung cancer disease
[7] and heart failure [8], biochemistry [15], computer sciences [17, 19], structure analysis [13],
fuzzy soft approaches [26, 27], topological study of zeolite socony mobil-5 [32], near sets theory
[24], and covering rough sets [40, 41]. In 2022, Dalkilic [5] introduced some topological structures
of virtual fuzzy parameterized fuzzy soft sets and proposed some applications of his methods.

In 1965, Nachbin [28] introduced a topological ordered space by incorporating a partial or-
der relation into the structure of a topological space. This extension allows for the consideration
of ordered relationships alongside topological properties, making topological ordered spaces a
generalization of traditional topological spaces. Building on this concept, Mc Cartan [25] utilized
monotone neighborhoods to introduce and explore ordered separation axioms, further contribut-
ing to the study of topological ordered spaces. The extension of indiscernibility to situations with
an additional partial order relation between objects is a natural progression. Significantly, accord-
ing to Lemma 3.4, our approach is equivalent to Pawlak’s approach in cases where we have both
an equivalence relation and a partial order relation that fulfills the conditions of being the equality
relation.

Topology and its applications, as discussed by Sierpinski [33] in 1956, have proven to be highly
relevant and impactful in various real-life scenarios. Numerous studies [9, 12] demonstrate the
practical significance of topology. An interesting development in this field is the concept of "nano-
topology", which emerged from a general topology induced by Pawlak’s rough set approximations
[35]. This nano-topology, dependent on an equivalence relation, has found applications in var-
ious fields. To broaden its application, we aim to extend the notion of nano-topology using the
proposed approximations. We will demonstrate that this generalized method is more accurate
than another method previously presented by Jayalakshmi [16].

Additionally, we propose a new method for topological reduction of attributes derived from
an information table. Unlike Pawlaks approach, this method considers a partial order relation in
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the information table, making it more generalized. In a case study conducted by Jayalakshmi [16],
the identification of key risk factors contributing to heart failure was explored. These risk factors
included high blood pressure, alcohol and smoking, diabetes, stress and strain, and family history
of early heart attacks.

In response to this quest, we introduce a novel extension to the classical rough set model, one
that transcends the confines of equivalence relations and ventures into the realm of partial order
relations. The scope of ourwork is inherently tied to a fundamental concern - the pressing need for
an enhanced understanding of the factors underpinning heart failure. Heart failure, amultifaceted
medical condition, eludes simple categorization due to its intricate web of contributing factors,
ranging from genetic predisposition to lifestyle choices. The classical rough set model, grounded
in equivalence relations, often falls short in capturing the subtleties and nuances inherent in these
relationships.

Heart failure is not merely a binary outcome; it exists along a spectrum, influenced by myriad
factors with varying degrees of impact. This inherent complexity demands an advanced analytical
framework capable of teasing out these nuances. In our quest to address this issue, we introduce
an additional dimension to rough set theory, the "m-nano flou set." This concept, elucidated in
Section 5, enables us to more accurately assess the relative impacts of key factors on heart failure.

Our research has a dual focus: firstly, to propose the novel notion of "ordered approximation
spaces," which serves as the bedrock for our extended rough set model. Building upon these
spaces, we introduce a pioneering generalization of Pawlak rough sets and their attendant exten-
sions. This not only broadens the toolbox of rough set theorists but also offers a fresh perspective
on data analysis in complex, uncertain scenarios. Secondly, we aim to extend the horizons of rough
set theory by unveiling the concept of "nano ordered topology." This expansion introduces nano
increasing and decreasing topological spaces, whichwe demonstrate, through rigorousmethodol-
ogy, significantly enhance the precision of data analysis. This discovery corroborates the insights
put forth in the seminal work of Jayalakshmi in 2017 [16].

Our findings, rooted in meticulous research and experimentation, carry the potential for pro-
found impact, particularly within the realm ofmedical research. Improvedmethods formanaging
uncertainty and quantifying the influence of diverse factors offer the promise of more accurate
predictions and diagnoses. Ultimately, our work is positioned to contribute substantially to ad-
vancements in heart failure treatment and prevention.

The rest of this paper is organized as follows. Section 2 presents a comprehensive overview
of the increasing (decreasing) set and fundamental concepts in rough set theory. Additionally, it
offers a concise introduction to flou sets and nano-topology. Moving on to Section 3, we propose
an innovative ordered approximation space. In Section 4, we present the concept of nano ordered
topology. To illustrate this concept, we provide an example. Through theoretical analysis, we
establish the monotonicity of the associated uncertainty measures, which includes the nano in-
creasing (or decreasing) accuracy measure. In Section 5, we introduce the concept ofm-nano flou
sets and conduct a comprehensive comparison with other relevant method. Finally, in Section 6,
we conclude our research findings.
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2 Preliminaries

Definition 2.1. [18] A partial order is a binary relation≲ defined on a setΨ that satisfies three properties:
reflexivity, antisymmetry, and transitivity. The pair (Ψ,≲) constitutes a partially ordered set (POS).
Additionally, the equality relation on Ψ, denoted by ▲, represents the set of all pairs of the form (ℓ, ℓ) for
each element ℓ in Ψ.

Definition 2.2. [28] Consider a POS (Ψ,≲), where Ψ is a set, and let ℓ be an element in Ψ, while Υ is a
subset of Ψ. Then:

1. i(ℓ) =
{
b ∈ Ψ : ℓ ≲ b

}
, and d(ℓ) =

{
b ∈ Ψ : b ≲ ℓ

}
.

2. i(Υ) =
{
b ∈ Ψ : ℓ ≲ b for some ℓ ∈ Υ

}
= ∪ℓ∈Υ(i(ℓ)), and

d(Υ) =
{
b ∈ Ψ : b ≲ ℓ for some ℓ ∈ Υ

}
= ∪ℓ∈Υ(d(ℓ)).

It is evident that if i(Υ) = Υ, then Υ can be considered an increasing set, and if d(Υ) = Υ, then Υ can be
regarded as a decreasing set.

Definition 2.3. [30] Consider a non-empty finite set of objects known as the universe, denoted by Ψ, and
an equivalence relation ℜ defined on Ψ. This pair, denoted as (Ψ,ℜ), is referred to as an approximation
space. Now, let Υ be a subset of Ψ. Then:

1. The lower approximation ofΥwith respect toℜ is the set of all objects that can confidently be classified
as belonging to Υ based on ℜ. This lower approximation is denoted by Lℜ(Υ), defined as
Lℜ(Υ) =

⋃{
ℜ(ν) : ℜ(ν) ⊆ Υ

}
, where ℜ(ν) represents the equivalence class determined by ν ∈ Ψ.

2. The upper approximation ofΥwith respect toℜ is the set of all objects that can potentially be classified
as belonging to Υ based on ℜ. This upper approximation is denoted by Uℜ(Υ), defined as
Uℜ(Υ) =

⋃{
ℜ(ν) : ℜ(ν) ∩Υ ̸= ∅

}
.

3. The boundary of the region of Υ with respect to ℜ is the set of all objects that cannot be decisively
classified as either belonging to Υ or not based on ℜ. This boundary is denoted by Bℜ(Υ), defined as
Bℜ(Υ) = Uℜ(Υ)− Lℜ(Υ).

4. The accuracy measure, denoted by Cℜ(Υ), represents the degree of crispness for a set Υ with respect
to the equivalence relation ℜ. It is defined as the ratio of the cardinality of the lower approximation to

the cardinality of the upper approximation, given by Cℜ(Υ) =
|Lℜ(Υ)|
|Uℜ(Υ)|

. If Uℜ(Υ) ̸= ∅, the set Υ is

considered a crisp set when Uℜ(Υ) = Lℜ(Υ) with respect to ℜ; otherwise, it is considered a rough
set.

Proposition 2.1. [30] Given an approximation space (Ψ,ℜ), let Υ,Γ ⊆ Ψ. Then:

1. Lℜ(Υ) ⊆ Υ ⊆ Uℜ(Υ).

2. Lℜ(∅) = ∅ and Uℜ(Ψ) = Ψ.

3. Lℜ(Υ) ⊆ Lℜ(Γ) and Uℜ(Υ) ⊆ Uℜ(Γ) whenever Υ ⊆ Γ.

4. Lℜ(Υ ∩ Γ) ⊆ Lℜ(Υ) ∩ Lℜ(Γ) and Lℜ(Υ) ∪ Lℜ(Γ) ⊆ Lℜ(Υ ∪ Γ).

5. Uℜ(Υ ∩ Γ) ⊆ Uℜ(Υ) ∩ Uℜ(Γ) and Uℜ(Υ) ∪ Uℜ(Γ) ⊆ Uℜ(Υ ∪ Γ).
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6. Lℜ(Lℜ(Υ)) = Lℜ(Υ) and Uℜ(Uℜ(Υ)) = Uℜ(Υ).

7. Uℜ(Υ
c) =

[
Lℜ(Υ)

]c and Lℜ(Υ
c) =

[
Uℜ(Υ)

]c.
Definition 2.4. [35] Consider a universe Ψ and an equivalence relation ℜ on Ψ. For any subset Υ ⊆ Ψ,
the collection τℜ(Υ) =

{
Ψ, ∅, Lℜ(Υ), Uℜ(Υ), Bℜ(Υ)

}
is called the nano topology on Ψ. By Property 2.1,

the nano topology τℜ(Υ) satisfies the following axioms:

1. Both Ψ and ∅ are in τℜ(Υ).

2. The union of any subcollection of τℜ(Υ) is also in τℜ(Υ).

3. The intersection of any finite subcollection of τℜ(Υ) is also in τℜ(Υ).

The pair
(
Ψ, τℜ(Υ)

)
is referred as a nano topological space. The elements of τℜ(Υ) are called nano open

sets, and their complements are called nano closed sets.

Definition 2.5. [14] A flou set in a universe Ψ is represented by a pair (Π, χ) of subsets of Ψ, where
Π ⊆ χ. The subset Π is referred to as the center zone, χ is known as the maximal zone, and Π−χ is termed
the flou zone.

Definition 2.6. [14] Anm-flou set ω in a universe Ψ (m ≥ 2) is represented by an m-tuple(
Π1,Π2,Π3, . . . ,Πm

)
. The core of ω is denoted by core(ω) = Π1, and the hull of ω is denoted by hull

(ω) = Πm.

3 Ordered Approximation Spaces

In this section, we present the concept of the ordered approximation space as a generalization
of Pawlak’s approximation. We explore several properties and illustrate them with counterexam-
ples for better understanding.

Definition 3.1. Consider a universe set Ψ, an equivalence relation ℜ on Ψ, and a partial order relation ≲
defined on Ψ. For each ν ∈ Ψ, we define the following concepts:

1. The increasing equivalence class is denoted by Iℜ(ν) and is defined as
Iℜ(ν) = ∪

{
i(β) : β ∈ Ψ, νℜβ

}
.

2. The decreasing equivalence class is denoted by Dℜ(ν) and is defined as
Dℜ(ν) = ∪

{
d(β) : β ∈ Ψ, νℜβ

}
.

Lemma 3.1. Let ℜ be an equivalence relation and ≲ a partial order relation on the set Ψ. For any element
ν ∈ Ψ:

1. ν ∈ Iℜ(ν) and ν ∈ Dℜ(ν).

2. Iℜ(ν) ̸= ∅ and Dℜ(ν) ̸= ∅.

Proof. The veracity of statements 1 and 2 can be deduced directly from Definition 3.1.

Remark 3.1. If ζ ∈ Iℜ(ν) or
(
Dℜ(ν)

)
, then it may not be the case that Iℜ(ζ) ⊆ Iℜ(ν)

or
(
Dℜ(ζ) ⊆ Dℜ(ν)

)
as explained in the following example.
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Example 3.1. LetΨ = {ρ, δ, σ, ς}withℜ = ▲∪
{
(ρ, σ), (σ, ρ)

}
and≲= ▲∪

{
(ρ, δ), (δ, ς), (ρ, ς)

}
. Then:

i(ρ) = {ρ, δ, ς}, d(ρ) = {ρ}, ℜ(ρ) = {ρ, σ}, Iℜ(ρ) = Ψ, Dℜ(ρ) = {ρ, σ},
i(δ) = {δ, ς}, d(δ) = {ρ, δ}, ℜ(δ) = {δ}, Iℜ(δ) = {δ, ς}, Dℜ(δ) = {ρ, δ},
i(σ) = {σ}, d(σ) = {σ}, ℜ(σ) = {ρ, σ}, Iℜ(σ) = Ψ, Dℜ(σ) = {ρ, σ},
i(ς) = {ς}, d(ς) = {ρ, δ, ς}, ℜ(ς) = {ς}, Iℜ(ς) = {ς}, Dℜ(ς) = {ρ, δ, ς}.

Clear, ρ ∈ Dℜ(δ), but Dℜ(ρ) ̸⊆ Dℜ(δ).

Remark 3.2. In Example 3.1, if we consider≲= ▲∪
{
(ς, δ), (δ, ρ), (ς, ρ)

}
, then we observe that ρ ∈ Iℜ(ς),

but it is not true that Iℜ(ρ) ̸⊆ Iℜ(ς).

Lemma 3.2. Let ℜ be an equivalence relation and ≲ is a partial order relation on Ψ, then for each ν ∈ Ψ:

1. ℜ(ν) ⊆ Iℜ(ν).

2. ℜ(ν) ⊆ Dℜ(ν).

Proof.

1. ℜ(ν) = ∪
{
β : β ∈ Ψ, νℜβ

}
⊆ ∪

{
i(β) : β ∈ Ψ, νℜβ

}
= Iℜ(ν).

2. Similar to 1.

Lemma 3.3. If ℜ is an equivalence relation, and ≲ is an equality relation on Ψ, then for each ν ∈ Ψ:

1. Iℜ(ν) = ℜ(ν).

2. Dℜ(ν) = ℜ(ν).

Proof.

1. Since ≲ is an equality relation, then i(β) = β, ∀β ∈ Ψ.
Therefore, Iℜ(ν) = {i(β) : β ∈ Ψ, νℜβ} = {β : β ∈ Ψ, νℜβ} = ℜ(ν).

2. Similar to 1.

Definition 3.2. An ordered approximation space (OAS) is denoted by
(
Ψ,ℜ,≲

)
, where Ψ is a universe

set, ℜ is an equivalence relation on Ψ, and ≲ is a partial order relation defined on Ψ.

Definition 3.3. Let
(
Ψ,ℜ,≲

)
be an ordered approximation space. For a subset Υ of Ψ, the following

concepts are defined:

1. The increasing lower approximation of Υ with respect to ℜ and ≲ is denoted by ILℜ(Υ) and defined
as: ILℜ(Υ) = ∪

{
Iℜ(ν) : ℜ(ν) ⊆ Υ

}
∩Υ.
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2. The decreasing lower approximation ofΥ with respect to ℜ and≲ is denoted byDLℜ(Υ) and defined
as: DLℜ(Υ) = ∪

{
Dℜ(ν) : ℜ(ν) ⊆ Υ

}
∩Υ.

3. The increasing upper approximation of Υ with respect to ℜ and ≲ is denoted by IUℜ(Υ) and defined
as: IUℜ(Υ) =

[
DLℜ(Υ

c)
]c.

4. The decreasing upper approximation ofΥwith respect toℜ and≲ is denoted byDUℜ(Υ) and defined
as: DUℜ(Υ) =

[
ILℜ(Υ

c)
]c.

5. The increasing boundary approximations of Υ with respect to ℜ and ≲ is denoted by IBℜ(Υ) and
defined as: IBℜ(Υ) = IUℜ(Υ)− ILℜ(Υ).

6. The decreasing boundary approximations of Υ with respect to ℜ and ≲ is denoted by DBℜ(Υ) and
defined as: DBℜ(Υ) = DUℜ(Υ)−DLℜ(Υ).

Proposition 3.1. Given an OAS (Ψ,ℜ,≲), let Υ,Γ ⊆ Ψ. Then:

1. ILℜ(Υ) ⊆ Υ ⊆ IUℜ(Υ),
(
DLℜ(Υ) ⊆ Υ ⊆ DUℜ(Υ)

)
.

2. ILℜ(∅) = ∅ and IUℜ(Ψ) = Ψ,
(
DLℜ(∅) = ∅ and DUℜ(Ψ) = Ψ

)
.

3. Υ ⊆ Γ =⇒ ILℜ(Υ) ⊆ ILℜ(Γ),
(
Υ ⊆ Γ =⇒ DLℜ(Υ) ⊆ DLℜ(Γ)

)
.

4. Υ ⊆ Γ =⇒ IUℜ(Υ) ⊆ IUℜ(Γ),
(
Υ ⊆ Γ =⇒ DUℜ(Υ) ⊆ DUℜ(Γ)

)
.

5. ILℜ(Υ ∩ Γ) ⊆ ILℜ(Υ) ∩ ILℜ(Γ),
(
DLℜ(Υ ∩ Γ) ⊆ DLℜ(Υ) ∩DLℜ(Γ)

)
.

6. ILℜ(Υ) ∪ ILℜ(Γ) ⊆ ILℜ(Υ ∪ Γ),
(
DLℜ(Υ) ∪DLℜ(Γ) ⊆ DLℜ(Υ ∪ Γ)

)
.

7. IUℜ(Υ ∩ Γ) ⊆ IUℜ(Υ) ∩ IUℜ(Γ),
(
DUℜ(Υ ∩ Γ) ⊆ DUℜ(Υ) ∩DUℜ(Γ)

)
.

8. IUℜ(Υ) ∪ IUℜ(Γ) ⊆ IUℜ(Υ ∪ Γ),
(
DUℜ(Υ) ∪DUℜ(Γ) ⊆ DUℜ(Υ ∪ Γ)

)
.

9. ILℜ(ILℜ(Υ)) = ILℜ(Υ),
(
DLℜ(DLℜ(Υ)) = DLℜ(Υ)

)
.

10. IUℜ(IUℜ(Υ)) = IUℜ(Υ),
(
DUℜ(DUℜ(Υ)) = DUℜ(Υ)

)
.

11. ILℜ(IUℜ(Υ)) ⊆ IUℜ(Υ),
(
DLℜ(DUℜ(Υ)) ⊆ DUℜ(Υ)

)
.

12. ILℜ(Υ) ⊆ IUℜ(ILℜ(Υ)),
(
DLℜ(Υ) ⊆ DUℜ(DLℜ(Υ))

)
.

13. IUℜ(Υ
c) = [DLℜ(Υ)]c,

(
DUℜ(Υ

c) = [ILℜ(Υ)]c
)
.

Proof.

1. From Definition 3.3, it can be inferred that ILℜ(Υ) ⊆ Υ and DLℜ(Υ) ⊆ Υ, then
Υc ⊆ [DLℜ(Υ)]c = IUℜ(Υ

c). So, Υ ⊆ IUℜ(Υ). Therefore, ILℜ(Υ) ⊆ Υ ⊆ IUℜ(Υ).

2. We can observe that ILℜ(∅) = ∅ since the intersection of ∅with the union of all sets that are
subsets of ∅ is itself empty. Conversely, IUℜ(Ψ) = Ψ as it represents the complement of
∅ (which is DLℜ(∅))within the set Ψ.

3. ILℜ(Υ) = ∪
{
Iℜ(ν) : ℜ(ν) ⊆ Υ

}
∩Υ ⊆ ∪

{
Iℜ(ν) : ℜ(ν) ⊆ Γ

}
∩ Γ = ILℜ(Γ).

4. If Υ ⊆ Γ, then Γc ⊆ Υc. This means that DLℜ(Γ
c) ⊆ DLℜ(Υ

c), by (3).
Therefore, [DLℜ(Υ

c)]c ⊆ [DLℜ(Γ
c)]c. As a result, IUℜ(Υ) ⊆ IUℜ(Γ).

515



S. H. Shalil et al. Malaysian J. Math. Sci. 17(4): 509–529(2023) 509 - 529

5. ILℜ(Υ∩ Γ) = ∪
{
Iℜ(ν) : ℜ(ν) ⊆ (Υ∩ Γ)

}
∩ (Υ∩ Γ) ⊆ ∪

{
Iℜ(ν) : ℜ(ν) ⊆ Υ

}
∩Υ = ILℜ(Υ).

Similarly, ILℜ(Υ ∩ Γ) ⊆ ILℜ(Γ). Therefore, ILℜ(Υ ∩ Γ) ⊆ ILℜ(Υ) ∩ ILℜ(Γ).

6. ILℜ(Υ) = ∪
{
Iℜ(ν) : ℜ(ν) ⊆ Υ

}
∩Υ ⊆ ∪

{
Iℜ(ν) : ℜ(ν) ⊆ (Υ∪ Γ)

}
∩ (Υ∪ Γ) = ILℜ(Υ∪ Γ).

Similarly, ILℜ(Γ) ⊆ ILℜ(Υ ∪ Γ). Consequently, ILℜ(Υ) ∪ ILℜ(Γ) ⊆ ILℜ(Υ ∪ Γ).

7. IUℜ(Υ∩Γ) =
[
DLℜ(Υ∩Γ)c

]c
=

[
DLℜ(Υ

c∪Γc)
]c ⊆ [

DLℜ(Υ
c)∪DLℜ(Γ

c)
]c

=
[
DLℜ(Υ

c)
]c∩[

DLℜ(Γ
c)
]c

= IUℜ(Υ) ∩ IUℜ(Γ).

8. IUℜ(Υ∪Γ) =
[
DLℜ(Υ∪Γ)c

]c
=

[
DLℜ(Υ

c∩Γc)
]c ⊇ [

DLℜ(Υ
c)∩DLℜ(Γ

c)
]c

=
[
DLℜ(Υ

c)
]c∪[

DLℜ(Γ
c)
]c

= IUℜ(Υ) ∪ IUℜ(Γ).

9. Let Γ = ILℜ(Υ) and y ∈ Γ = ∪
{
Iℜ(ν) : ℜ(ν) ⊆ Υ

}
∩Υ. So, y ∈ Iℜ(ν) ∩Υ ⊆ Iℜ(ν).

This implies that y ∈ Iℜ(ν) ∩ Γ. Then, y ∈ ILℜ(Γ) and so ILℜ(Υ) ⊆ ILℜ(ILℜ(Υ)).
By using property (1), it can be deduced that ILℜ(ILℜ(Υ)) ⊆ ILℜ(Υ).
Therefore, ILℜ(ILℜ(Υ)) = ILℜ(Υ).

10. By utilizing property (9) and the definition of IUℜ, we can deduce that
IUℜ(IUℜ(Υ)) = IUℜ(Υ).

11. Let Λ = IUℜ(Υ), and according to property (1), ILℜ(Λ) ⊆ Λ.
This means that ILℜ(IUℜ(Υ)) ⊆ IUℜ(Υ).

12. According to the definition of Γ, if Γ = ILℜ(Υ), property (1) implies that Γ ⊆ IUℜ(Γ).
In other words, ILℜ(Υ) ⊆ IUℜ(ILℜ(Υ)).

13.
[
DLℜ(Υ)

]c
=

[
IUℜ(Υ

c)c
]c

= IUℜ(Υ
c).

A corresponding proof is provided for the cases mentioned in the parentheses.

In general, properties 11 and 12 in Proposition 3.1 do not hold in the opposite direction. The
following example explains that:

Example 3.2. Let Ψ = {1, 2, ..., 8} with ℜ = ▲∪
{
(1, 4), (4, 1), (1, 5), (5, 1), (4, 5), (5, 4), (3, 6), (6, 3)

}
and ≲= ▲ ∪

{
(1, 3), (1, 6), (4, 3), (7, 3), (4, 6), (5, 6), (7, 6)

}
. Then:

1. If ω =
{
1, 2, 7

}
⊆ Ψ, then IUℜ(ω) =

[
DLℜ(ω

c)
]c

=
[
{3, 4, 5, 6, 8}

]c
=

{
1, 2, 7

}
, and

ILℜ(IUℜ(ω)) =
{
2, 3, 6, 7

}
∩
{
1, 2, 7

}
=

{
2, 7

}
. Therefore, IUℜ(ω) ⊈ ILℜ(IUℜ(ω)).

Also, if ω = {1, 3} ⊆ Ψ, then DUℜ(ω) =
[
ILℜ(ω

c)
]c

=
[
{2, 6, 7, 8}

]c
=

{
1, 3, 4, 5

}
, and

DLℜ(DUℜ(ω)) =
{
1, 4, 5

}
∩
{
1, 3, 4, 5

}
=

{
1, 4, 5

}
. Therefore, DUℜ(ω) ⊈ DLℜ(DUℜ(ω)).

2. If Υ =
{
1, 2, 3, 7

}
⊆ Ψ, then ILℜ(Υ) =

{
2, 3, 7

}
, and IUℜ(ILℜ(Υ)) = IUℜ

(
{2, 3, 7}

)
=[

DLℜ({2, 3, 7})c
]c

=
[
{1, 4, 5, 8} ∩ {1, 4, 5, 6, 8}

]c
=

{
2, 3, 6, 7

}
̸= ILℜ(Υ).

Also, if Υ = {1, 3, 4, 6, 7} ⊆ Ψ, then DLℜ(Υ) = {1, 3, 4, 6, 7}, and
DUℜ

(
DLℜ(Υ)

)
= DUℜ({1, 3, 4, 6, 7}) = [ILℜ({1, 3, 4, 6, 7})c]c =

[
{2, 8} ∩ {2, 5, 8}

]c
=

{
1, 3, 4, 5, 6, 7

}
̸= DLℜ(Υ).

Remark 3.3. Proposition 3.1 demonstrates that the introduced approximations adhere to all properties of
Pawlak approximations in the general scenario, without imposing any additional restrictions or conditions
on the two relations. As a result, we can assert that our methodology represents a generalization of Pawlak’s
rough set theory. The following result further validates this claim.

Lemma 3.4. If ℜ is an equivalence relation with ≲= ▲ on Ψ and Υ ⊆ Ψ.
Then, ILℜ(Υ) = DLℜ(Υ) = Lℜ(Υ) and IUℜ(Υ) = DUℜ(Υ) = Uℜ(Υ).
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Proof. By Lemma 3.3, the proof is evident.

4 Nano Ordered Topological Spaces

In this section, we introduce the concept of nano ordered topology. To illustrate this concept,
we provide an example. Through theoretical analysis, we demonstrate themonotonicity of the cor-
responding uncertainty measures, including the nano increasing (or decreasing) accuracy mea-
sure.

Definition 4.1. Consider an ordered approximation space (Ψ,ℜ,≲). For any subsetΥ ⊆ Ψ, we define the
nano increasing topology with respect to Υ as τ Iℜ =

{
Ψ, ∅, ILℜ(Υ), IUℜ(Υ), IBℜ(Υ)

}
.

The nano increasing topology τ Iℜ is a topology onΨ, satisfying the following axioms (rephrasing Propo-
sition 3.1):

1. Both Ψ and ∅ are elements of τ Iℜ.

2. The union of any subcollection of elements in τ Iℜ is also an element of τ Iℜ.

3. The intersection of any finite subcollection of elements in τ Iℜ is also an element of τ Iℜ.

This nano increasing topology provides a way to define open sets onΨwith respect to the equivalence relation
ℜ and the partial order relation ≲. The open sets in τ Iℜ are Ψ itself, the empty set ∅, the increasing lower
approximation ofΥ denoted by ILℜ(Υ), the increasing upper approximation ofΥ denoted by IUℜ(Υ), and
the increasing boundary approximation of the region of Υ denoted by IBℜ(Υ).

Remark 4.1. The nano decreasing topology with respect to a subset Υ of an ordered approximation space
(Ψ,ℜ,≲) is denoted by τDℜ and defined as τDℜ =

{
Ψ, ∅, DLℜ(Υ), DUℜ(Υ), DBℜ(Υ)

}
.

Example 4.1. From Example 3.1, let Υ =
{
ρ, ς

}
⊆ Ψ. Then:

ILℜ(Υ) = Iℜ(ς) ∩Υ = {ς}, IUℜ(Υ) =
[
DLℜ(Υ

c)
]c

=
[
{δ}

]c
=

{
ρ, σ, ς

}
, then

IBℜ(Υ) = IUℜ(Υ)−ILℜ(Υ) = {ρ, σ, ς}−{ς} = {ρ, σ}. Therefore, τ Iℜ =
{
Ψ, ∅, {ς}, {ρ, σ, ς}, {ρ, σ}

}
.

And DLℜ(Υ) = Dℜ(ς) ∩Υ = {ρ, ς}, DUℜ(Υ) =
[
ILℜ(Υ

c)
]c

= [{δ}]c =
{
ρ, σ, ς

}
, then

DBℜ(Υ) = DUℜ(Υ)−DLℜ(Υ) = {ρ, σ, ς}−{ρ, ς} = {σ}. Thus, τDℜ =
{
Ψ, ∅, {ρ, ς}, {ρ, σ, ς}, {σ}

}
.

Definition 4.2. Given a nano increasing topological space (Ψ, τ IℜP
), where ℜP is the equivalence relation

with respect to the set of attributes P. Then, the degree of crispness of any subset Υ ⊆ Ψ is represented by a
nano increasing accuracy measure CI

ℜP
(Υ) and is defined as follows:

CI
ℜP

(Υ) =
|ILℜP

(Υ)|
|IUℜP

(Υ)|
, Υ ̸= ∅.

It is clear that the value of CI
ℜP

(Υ) is between 0 and 1. If ILℜP
(Υ) = IUℜP

(Υ), then Υ is an increasing
set. Otherwise, Υ is considered as an increasing rough set.

Note that: CD
ℜP

(Υ) =
|DLℜP

(Υ)|
|DUℜP

(Υ)|
, Υ ̸= ∅ is the nano decreasing accuracy measure.
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5 Application of Nano Increasing (Decreasing) Topological Spaces

In this section, we present the concept of m-nano flou sets. Additionally, we provide an ap-
plication of this concept to a real-life problem, where we compare our method with the previous
method proposed by [16]. The comparison is done by calculating the accuracy measure for both
methods.

Definition 5.1. LetΨ represent the universe,ℜ an equivalence relation onΨ, and≲ a partial order relation
on Ψ. Suppose we have a set of attributes denoted as P , and Υ is a subset of Ψ. We define two topologies
on Ψ with respect to Υ: τ IℜP

(Υ), which is the nano increasing topology, and τDℜP
(Υ), which is the nano

decreasing topology.

Anm-nano flou set ω of P , where (m ≥ 2), is described as anm-tuple. In thism-tuple, each component
ℏi is a subset of ℏj if, for all ℏi, ℏj ∈ P , the following condition holds:

mid
(
CI

ℜP−{ℏi}
(Υ), CD

ℜP−{ℏi}
(Υ)

)
< mid

(
CI

ℜP−{ℏj}
(Υ), CD

ℜP−{ℏj}
(Υ)

)
.

In this condition, CI
ℜP−ℏi

(Υ) represents the nano increasing accuracy of Υ concerning the attributes P
after removing ℏi, and CD

ReP−ℏi
(Υ) represents the nano decreasing accuracy. The m-nano flou set ω is

determined based on the comparison of these accuracy measures for all pairs of attributes ℏi and ℏj in P .

Algorithm

Option 1: Using the nano increasing topological space

Case 1: Patients with Heart Attack
Step 1: To represent the given information, follow these steps:

1. Begin with a finite universe Ψ.
2. Consider a finite set P of attributes, divided into two classes: P1 for condition

attributes and P2 for the decision attribute.
3. Establish an equivalence relation ℜ on Ψ and a corresponding partial order

relation ≲ based on P1.
4. Take a subset Υ of Ψ.
5. Represent the data as an information table, where the columns are labeled by

attributes from P , the rows are objects from Ψ, and the table entries represent
the attribute values associated with each object.

Step 2: Calculate the increasing (decreasing) lower approximation, increasing (decreas-
ing) upper approximation and the increasing (decreasing) boundary region of Υ
with respect to ℜP1

and ≲P1
.

Step 3: Construct the nano increasing (decreasing) topology τ IℜP1
(τDℜP1

) on Ψ.

Step 4: Remove an attribute ℏ from P1 and find the increasing (decreasing) lower and up-
per approximations and the increasing (decreasing) boundary region of Υ with
respect to ℜP1−{ℏ} and ≲P1−{ℏ}, ℏ ∈ P1.

Step 5: Generate the nano increasing (decreasing) topology τ IℜP1−{ℏ}
(τDℜP1−{ℏ}

) on Ψ,
ℏ ∈ P1.

Step 6: Repeat steps 3 and 4 for all attributes in P1.
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Step 7: Attributes in P1 for which ℏi ⊆ ℏj , ∀i, j form them-nano flou set of ℜP1
.

Case 2: Patients not with Heart Attack.
Do the same steps.

Option 2: Using the nano decreasing topological space
Do the same steps in Option 1.

Example 5.1. In this example, the objective is to find the key factors affecting "Heart Attack" using the
nano increasing (decreasing) topology and topological reduction of attributes in an incomplete information
system. The data set provided in Table 1 consists of information about patients related to factors such as
High Blood Pressure, Alcohol and Smoking, Stress and Strain, Diabetics, and Family History.

The set of patients being examined is represented by Ψ =
{
♭1, ♭2, ♭3, ♭4, ♭5, ♭6, ♭7, ♭8

}
, and the

set of factors under consideration is denoted by P1 =
{
ℏ1, ℏ2, ℏ3, ℏ4, ℏ5

}
, where ℏ1 corresponds to

High Blood Pressure, ℏ2 to Alcohol and Smoking, ℏ3 to Diabetics, ℏ4 to Stress and Strain, and ℏ5
to Family History and P2 = { Result }.

The equivalence relation ℜ on Ψ is defined as ℜP1 = ▲ ∪
{
(♭1, ♭4), (♭4, ♭1), (♭3, ♭6), (♭6, ♭3)

}
, which

indicates that patients ♭1 and ♭4 are equivalent, as well as patients ♭3 and ♭6.

The partial order relation≲, defined as≲≡⊂, is given by≲P1
= ▲∪

{
(♭5, ♭1), (♭5, ♭3), (♭5, ♭4), (♭5, ♭6)

}
.

This implies that patient ♭5 is related to patients ♭1, ♭3, ♭4, and ♭6.

Using these relations, the nano increasing (decreasing) topology can be applied to identify the
key factors influencing "Heart Attack" by performing topological reduction of attributes in the
incomplete information system.

In Table 1, we have two different options to analyze the data:

Table 1: Tabular information about patients those who are having high blood pressure, alcohol and smoking, stress and strain, diabetics
and family history [16].

Objects ℏ1 ℏ2 ℏ3 ℏ4 ℏ5 Result
♭1 Yes Yes Yes No No

√

♭2 Yes No No Yes Yes
√

♭3 No Yes Yes No Yes
√

♭4 Yes Yes Yes No No Nil
♭5 No Yes Yes No No Nil
♭6 No Yes Yes No Yes Nil
♭7 Yes No Yes No Yes

√

♭8 Yes No Yes Yes No Nil

Option 1: Using the nano increasing topological space:

Case 1: (Patients with Heart Attack)
Let Υ = {♭1, ♭2, ♭3, ♭7}, the set of patient with Heart Attack.

519



S. H. Shalil et al. Malaysian J. Math. Sci. 17(4): 509–529(2023) 509 - 529

Then, ILℜP1
(Υ) = {♭2, ♭7}, IUℜ(Υ) = {♭1, ♭2, ♭3, ♭4, ♭6, ♭7} and IBℜP1

(Υ) = {♭1, ♭3, ♭4, ♭6}.
Therefore, τ IℜP1

=
{
Ψ, ∅, {♭2, ♭7}, {♭1, ♭2, ♭3, ♭4, ♭6, ♭7}, {♭1, ♭3, ♭4, ♭6}

}
.

Step 1: After removing the attribute "ℏ1 = High Blood Pressure" from P1,
ℜP1−{ℏ1} = ▲∪

{
(♭1, ♭4), (♭4, ♭1), (♭1, ♭5), (♭5, ♭1), (♭5, ♭4), (♭4, ♭5), (♭3, ♭6), (♭6, ♭3)

}
and

≲P1−{ℏ1}= ▲ ∪
{
(♭1, ♭3), (♭1, ♭6), (♭4, ♭3), (♭5, ♭3), (♭7, ♭3), (♭4, ♭6), (♭5, ♭6), (♭7, ♭6)

}
.

Then, ILℜP1−{ℏ1}(Υ) = {♭2, ♭3, ♭7}, IUℜP−{ℏ1}(Υ) =
{
♭1, ♭2, ♭3, ♭4, ♭5, ♭6, ♭7

}
and

IBℜP1−{ℏ1}(Υ) = {♭1, ♭4, ♭5, ♭6} ̸⊆ IBℜP1
(Υ).

Therefore, τ IℜP1−{ℏ1}
=

{
Ψ, ∅, {♭2, ♭3, ♭7}, {♭1, ♭2, ♭3, ♭4, ♭6, ♭7}, {♭1, ♭3, ♭4, ♭6}

}
.

Step 2: After removing the attribute "ℏ2 = Alcohol and smoking" from P1,
ℜP1−{ℏ2} = ▲ ∪

{
(♭1, ♭4), (♭4, ♭1), (♭3, ♭6), (♭6, ♭3)

}
and

≲P1−{ℏ2}= ▲ ∪
{
(♭5, ♭1), (♭1, ♭7), (♭1, ♭8), (♭5, ♭3), (♭3, ♭7), (♭5, ♭4), (♭4, ♭7), (♭4, ♭8),

(♭5, ♭6), (♭5, ♭7), (♭5, ♭8), (♭6, ♭7)
}
.

Then, ILℜP1−{ℏ2}(Υ) = {♭2, ♭7}, IUℜP1−{ℏ2}(Υ) = {♭1, ♭2, ♭3, ♭6, ♭7} and
IBℜP1−{ℏ2}(Υ) = {♭1, ♭3, ♭6} ⊆ IBℜP1

(Υ).

Therefore, τ IℜP1−{ℏ2}
=

{
Ψ, ∅, {♭2, ♭7}, {♭1, ♭2, ♭3, ♭4, ♭6, ♭7}, {♭1, ♭3, ♭4, ♭6}

}
.

Step 3: After removing the attribute "ℏ3 = Diabetics" from P1,
ℜP1−{ℏ3} = ▲ ∪

{
(♭1, ♭4), (♭4, ♭1), (♭3, ♭6), (♭6, ♭3)

}
and

≲P1−{ℏ3}= ▲ ∪
{
(♭5, ♭1), (♭7, ♭2), (♭8, ♭2), (♭5, ♭3), (♭5, ♭4), (♭5, ♭6)

}
.

Then, ILℜP1−{ℏ3}(Υ) = {♭2, ♭7}, IURP1−{ℏ3}(Υ) = {♭1, ♭2, ♭3, ♭4, ♭6, ♭7} and
IBℜP−{ℏ3}(Υ) = {♭1, ♭3, ♭4, ♭6} ⊆ IBℜP1

(Υ).

Therefore, τ IℜP1−{ℏ3}
=

{
Ψ, ∅, {♭2, ♭7}, {♭1, ♭2, ♭3, ♭4, ♭6, ♭7}, {♭1, ♭3, ♭4, ♭6}

}
.

Step 4: After removing the attribute "ℏ4 = Stress and strain" from P1,
ℜP1−{ℏ4} = ▲ ∪

{
(♭1, ♭4), (♭4, ♭1), (♭3, ♭6), (♭6, ♭3)

}
and

≲P1−{ℏ4}= ▲ ∪
{
(♭5, ♭1), (♭8, ♭1), (♭2, ♭7), (♭5, ♭3), (♭5, ♭4), (♭8, ♭4), (♭5, ♭6), (♭8, ♭7)

}
.

Then, ILℜP1−{ℏ4}(Υ) = {♭2, ♭7}, IUℜP−{ℏ4}(Υ) = {♭1, ♭2, ♭3, ♭4, ♭6, ♭7} and
IBℜP1−{ℏ4}(Υ) = {♭1, ♭3, ♭4, ♭6} ⊆ IBℜP1

(Υ).

Therefore, τ IℜP1−{ℏ4}
=

{
Ψ, ∅, {♭2, ♭7}, {♭1, ♭2, ♭3, ♭4, ♭6, ♭7}, {♭1, ♭3, ♭4, ♭6}

}
.

Step 5: After removing the attribute "ℏ5 = Family history" from P1,
ℜP1−{ℏ5} = ▲∪

{
(♭1, ♭4), (♭4, ♭1), (♭3, ♭5), (♭5, ♭3), (♭5, ♭6), (♭6, ♭5), (♭3, ♭6), (♭6, ♭3)

}
and

≲P1−{ℏ5}= ▲ ∪
{
(♭3, ♭1), (♭5, ♭1), (♭7, ♭1), (♭2, ♭8), (♭3, ♭4), (♭5, ♭4), (♭6, ♭4),

(♭7, ♭4), (♭7, ♭8)
}
.

Then ILℜP1−{ℏ5}(Υ) = {♭2, ♭7}, IUℜP1−{ℏ5}(Υ) = {♭1, ♭2, ♭3, ♭4, ♭5, ♭6, ♭7} and
IBℜP1−{ℏ5}(Υ) = {♭1, ♭3, ♭4, ♭5, ♭6} ̸⊆ IBℜP1

(Υ).

Therefore, τ IℜP1−{ℏ5}
=

{
Ψ, ∅, {♭2, ♭7}, {♭1, ♭2, ♭3, ♭4, ♭5, ♭6, ♭7}, {♭1, ♭3, ♭4, ♭5, ♭6}

}
.

Case 2: (Patients not with Heart Attack)
Let Υ = {♭4, ♭5, ♭6, ♭8}, the set of patient without Heart Attack.
Then, ILℜP1

(Υ) = {♭4, ♭5, ♭6, ♭8}, IUℜP1
(Υ) = {♭1, ♭3, ♭4, ♭5, ♭6, ♭8}

and IBℜP1
(Υ) = {♭1, ♭3}.

Therefore, τ IℜP1
=

{
Ψ, ∅, {♭4, ♭5, ♭6, ♭8}, {♭1, ♭3, ♭4, ♭5, ♭6, ♭8}, {♭1, ♭3}

}
.
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Step 1: After removing the attribute "ℏ1 = High Blood Pressure" from P1.
Then, ILℜP1−{ℏ1}(Υ) = {♭8}, IUℜP1−{ℏ1}(Υ) = {♭1, ♭3, ♭4, ♭5, ♭6, ♭8} and
IBℜP1−{ℏ1}(Υ) = {♭1, ♭3, ♭4, ♭5, ♭6} ̸⊆ IBℜP1

(Υ).

Therefore, τ IℜP1−{ℏ1}
=

{
Ψ, ∅, {♭8}, {♭1, ♭3, ♭4, ♭5, ♭6, ♭8}, {♭1, ♭3, ♭4, ♭5, ♭6}

}
.

Step 2: After removing the attribute "ℏ2 = Alcohol and smoking" from P1.
Then, ILℜP1−{ℏ2}(Υ) = IUℜP1−{ℏ2}(Υ) = {♭4, ♭5, ♭6, ♭8} and
IBℜP1−{ℏ2}(Υ) = ∅ ⊆ IBℜP1

(Υ).

Therefore, τ IℜP1−{ℏ2}
=

{
Ψ, ∅, {♭4, ♭5, ♭6, ♭8}

}
.

Step 3: After removing the attribute "ℏ3 = Diabetics" from P1.
Then, ILℜP1−{ℏ3}(Υ) = {♭4, ♭5, ♭6, ♭8}, IUℜP1−{ℏ3}(Υ) = {♭1, ♭3, ♭4, ♭5, ♭6, ♭8} and
IBℜP−{ℏ3}(Υ) = {♭1, ♭3} ⊆ IBℜP1

(Υ).

Therefore, τ IℜP1−{ℏ3}
=

{
Ψ, ∅, {♭4, ♭5, ♭6, ♭8}, {♭1, ♭3, ♭4, ♭5, ♭6, ♭8}, {♭1, ♭3}

}
.

Step 4: After removing the attribute "ℏ4 = Stress and strain" from P1.
Then, ILℜP1−{ℏ4}(Υ) = {♭4, ♭5, ♭6, ♭8}, IUℜP1−{ℏ4}(Υ) = {♭1, ♭3, ♭4, ♭5, ♭6, ♭8} and
IBℜP−{ℏ4}(Υ) = {♭1, ♭3} ⊆ IBℜP1

(Υ).

Therefore, τ IℜP1−{ℏ4}
=

{
Ψ, ∅, {♭4, ♭5, ♭6, ♭8}, {♭1, ♭3, ♭4, ♭5, ♭6, ♭8}, {♭1, ♭3}

}
.

Step 5: After removing the attribute "ℏ5 = Family history" from P1.
Then, ILℜP1−{ℏ5}(Υ) = {♭8}, IUℜP1−{ℏ5}(Υ) = {♭1, ♭3, ♭4, ♭5, ♭6, ♭8} and
IBℜP1−{ℏ5}(Υ) = {♭1, ♭3, ♭4, ♭5, ♭6} ̸⊆ IBℜP1

(Υ).

Therefore, τ IℜP1−{ℏ5}
=

{
Ψ, ∅, {♭8}, {♭1, ♭3, ♭4, ♭5, ♭6, ♭8}, {♭1, ♭3, ♭4, ♭5, ♭6}

}
.

Now we generate the m-nano flou set on P1 in the case of patients with heart attack:

1. mid
(
CI

ℜP1−{ℏ1}
(Υ), CD

ℜP1−{ℏ1}
(Υ)

)
=

3
7 + 2

7

2
=

2.5

7
.

2. mid
(
CI

ℜP1−{ℏ2}
(Υ), CD

ℜP1−{ℏ2}
(Υ)

)
=

2
5 + 1

2
=

3.5

5
.

3. mid
(
CI

ℜP1−{ℏ3}
(Υ), CD

ℜP1−{ℏ3}
(Υ)

)
=

1
3 + 1

2

2
=

2.5

6
.

4. mid
(
CI

ℜP1−{ℏ4}
(Υ), CD

ℜP1−{ℏ4}
(Υ)

)
=

1
3 + 1

2

2
=

2.5

6
.

5. mid
(
CI

ℜP1−{ℏ5}
(Υ), CD

ℜP1−{ℏ5}
(Υ)

)
=

2
7 + 2

7

2
=

2

7
.

Clear that: m-nano flou set = (ℏ5, ℏ1, ℏ3 = ℏ4, ℏ2).

Remark 5.1.

1. mid
(
CI

ℜP1−{ℏ3}
(Υ), CD

ℜP1−{ℏ3}
(Υ)

)
= mid

(
CI

ℜP1−{ℏ4}
(Υ), CD

ℜP1−{ℏ4}
(Υ)

)
=

mid
(
CI

ℜP1
(Υ), CD

ℜP1
(Υ)

)
=

2.5

6
.

2. The core of this m-nano flou set is ℏ5.

3. The attribute ℏ2 doesn’t affect the results.
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ℏ2ℏ3
ℏ4ℏ1ℏ5

Option 2: Using the nano decreasing topological space:

Case 1: (Patients with Heart Attack)
Let Υ = {♭1, ♭2, ♭3, ♭7}, the set of patient with Heart Attack.
Then, DLℜP1

(Υ) = {♭2, ♭7}, DUℜP1
(Υ) = {♭1, ♭2, ♭3, ♭7} and DBℜP1

(Υ) = {♭1, ♭3}.
Therefore, τDℜP1

=
{
Ψ, ∅, {♭2, ♭7}, {♭1, ♭2, ♭3, ♭7}, {♭1, ♭3}

}
.

Step 1: After removing the attribute "ℏ1 = High blood pressure" from P1.
Then, DLℜP1−{ℏ1}(Υ) = {♭2, ♭7}, DUℜP1−{ℏ1}(Υ) = {♭1, ♭2, ♭3, ♭4, ♭5, ♭6, ♭7} and
DBℜP1−{ℏ1}(Υ) = {♭1, ♭3, ♭4, ♭5, ♭6} ̸⊆ DBℜP1

(Υ).

Therefore, τDℜP1−{ℏ1}
=

{
Ψ, ∅, {♭2, ♭7}, {♭1, ♭2, ♭3, ♭4, ♭5, ♭6, ♭7}, {♭1, ♭3, ♭4, ♭5, ♭6}

}
.

Step 2: After removing the attribute "ℏ2 = Alcohol and smoking" from P1.
Then, DLℜP1−{ℏ2}(Υ) = DUℜP1−{ℏ2}(Υ) = {♭1, ♭2, ♭3, ♭7} and
DBℜP1−{ℏ2}(Υ) = ∅ ⊆ DBℜP1

(Υ).

Therefore, τDℜP1−{ℏ2}
=

{
Ψ, ∅, {♭1, ♭2, ♭3, ♭7}

}
.

Step 3: After removing the attribute "ℏ3 = Diabetics" from P1.
Then, DLℜP1−{ℏ3}(Υ) = {♭2, ♭7}, DUℜP1−{ℏ3}(Υ) = {♭1, ♭2, ♭3, ♭7} and
DBℜP1−{ℏ3}(Υ) = {♭1, ♭3} ⊆ DBℜP1

(Υ).

Therefore, τDℜP1−{ℏ3}
=

{
Ψ, ∅, {♭2, ♭7}, {♭1, ♭2, ♭3, ♭7}, {♭1, ♭3}

}
.

Step 4: After removing the attribute "ℏ4 = Stress and strain" from P1.
Then, DLℜP1−{ℏ4}(Υ) = {♭2, ♭7}, DUℜP1−{ℏ4}(Υ) = {♭1, ♭2, ♭3, ♭7} and
DBℜP1−{ℏ4}(Υ) = {♭1, ♭3} ⊆ DBℜP1

(Υ).

Therefore, τDℜP1−{ℏ4}
=

{
Ψ, ∅, {♭2, ♭7}, {♭1, ♭2, ♭3, ♭7}, {♭1, ♭3}

}
.

Step 5: After removing the attribute "ℏ5 = Family history" from P1.
Then, DLℜP1−{ℏ5}(Υ) = {♭2, ♭7}, DUℜP1−{ℏ5}(Υ) = {♭1, ♭2, ♭3, ♭4, ♭5, ♭6, ♭7} and
DBℜP1−{ℏ5}(Υ) = {♭1, ♭3, ♭4, ♭5, ♭6} ̸⊆ DBℜP1

(Υ).

Therefore, τDℜP1−{ℏ5}
=

{
Ψ, ∅, {♭2, ♭7}, {♭1, ♭2, ♭3, ♭4, ♭5, ♭6, ♭7}, {♭1, ♭3, ♭4, ♭5, ♭6}

}
.

Case 2: (Patients not with Heart Attack)
Let Υ = {♭4, ♭5, ♭6, ♭8}, the set of patient without Heart Attack.
Then, DLℜP1

(Υ) = {♭5, ♭8}, DUℜP1
(Υ) = {♭1, ♭3, ♭4, ♭5, ♭6, ♭8} and

DBℜP1
(Υ) = {♭1, ♭3, ♭4, ♭6}.

Therefore, τDℜP1
=

{
Ψ, ∅, {♭5, ♭8}, {♭1, ♭3, ♭4, ♭5, ♭6, ♭8}, {♭1, ♭3, ♭4, ♭6}

}
.

Step 1: After removing the attribute "ℏ1 = High blood pressure" from P1.
Then, DLℜP1−{ℏ1}(Υ) = {♭8}, DUℜP1−{ℏ1}(Υ) = {♭1, ♭4, ♭5, ♭6, ♭8} and
DBℜP1−{ℏ1}(Υ) = {♭1, ♭4, ♭5, ♭6} ̸⊆ DBRP1

(Υ).

Therefore, τDℜP1−{ℏ1}
=

{
Ψ, ∅, {♭8}, {♭1, ♭4, ♭5, ♭6, ♭8}, {♭1, ♭4, ♭5, ♭6}

}
.
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Step 2: After removing the attribute "ℏ2 = Alcohol and smoking" from P1.
Then, DLℜP1−ℏ2

(Υ) = {♭1, ♭4, ♭5, ♭8}, DUℜP1−ℏ2
(Υ) = {♭1, ♭3, ♭4, ♭5, ♭6, ♭8} and

DBℜP1−{ℏ2}(Υ) = {♭3, ♭6} ⊆ DBℜP1
(Υ).

Therefore, τDℜP1−{ℏ2}
=

{
Ψ, ∅, {♭1, ♭4, ♭5, ♭8}, {♭1, ♭3, ♭4, ♭5, ♭6, ♭8}, {♭3, ♭6}

}
.

Step 3: After removing the attribute "ℏ3 = Diabetics" from P1.
Then, DLℜP1−{ℏ3}(Υ) = {♭5, ♭8}, DUℜP1−{ℏ3}(Υ) = {♭1, ♭3, ♭4, ♭5, ♭6, ♭8} and
DBℜP1−{ℏ3}(Υ) = {♭1, ♭3, ♭4, ♭6} ⊆ DBℜP1

(Υ).

Therefore, τDℜP1−{ℏ3}
=

{
Ψ, ∅, {♭5, ♭8}, {♭1, ♭3, ♭4, ♭5, ♭6, ♭8}, {♭1, ♭3, ♭4, ♭6}

}
.

Step 4: After removing the attribute "ℏ4 = Stress and strain" from P1.
Then, DLℜP1−{ℏ4}(Υ) = {♭5, ♭8}, DUℜP1−{ℏ4}(Υ) = {♭1, ♭3, ♭4, ♭5, ♭6, ♭8} and
DBℜP1−{ℏ4}(Υ) = {♭1, ♭3, ♭4, ♭6} ⊆ DBℜP1

(Υ).

Therefore, τDℜP1−{ℏ4}
=

{
Ψ, ∅, {♭5, ♭8}, {♭1, ♭3, ♭4, ♭5, ♭6, ♭8}, {♭1, ♭3, ♭4, ♭6}

}
.

Step 5: After removing the attribute "ℏ5 = Family history" from P1.
Then, DLℜP1−{ℏ5}(Υ) = {♭8}, DUℜP1−{ℏ5}(Υ) = {♭3, ♭4, ♭5, ♭6, ♭8} and
DBℜP1−{ℏ5}(Υ) = {♭3, ♭4, ♭5, ♭6} ̸⊆ DBℜP1

(Υ).

Therefore, τDℜP1−{ℏ5}
=

{
Ψ, ∅, {♭8}, {♭3, ♭4, ♭5, ♭6, ♭8}, {♭3, ♭4, ♭5, ♭6}

}
.

Now we generate them-nano flou set on P1 in the case of patients without heart attack:

1. mid
(
CI

ℜP1−{ℏ1}
(Υ), CD

ℜP1−{ℏ1}
(Υ)

)
=

1
6 + 1

5

2
=

5.5

30
.

2. mid
(
CI

ℜP1−{ℏ2}
(Υ), CD

ℜP1−{ℏ2}
(Υ)

)
=

1 + 2
3

2
=

2.5

3
.

3. mid
(
CI

ℜP1−{ℏ3}
(Υ), CD

ℜP1−{ℏ3}
(Υ)

)
=

2
3 + 1

3

2
=

1

2
.

4. mid
(
CI

ℜP1−{ℏ4}
(Υ), CD

ℜP1−{ℏ4}
(Υ)

)
=

2
3 + 1

3

2
=

1

2
.

5. mid
(
CI

ℜP1−{ℏ5}
(Υ), CD

ℜP1−{ℏ5}
(Υ)

)
=

1
6 + 1

5

2
=

5.5

30
.

Clear that: m-nano flou set = (ℏ1 = ℏ5, ℏ3 = ℏ4, ℏ2).

Remark 5.2.

1. mid
(
CI

ℜP1−{ℏ3}
(Υ), CD

ℜP1−{ℏ3}
(Υ)

)
= mid

(
CI

ℜP1−{ℏ4}
(Υ), CD

ℜP1−{ℏ4}
(Υ)

)
=

mid
(
CI

ℜP1
(Υ), CD

ℜP1
(Υ)

)
=

1

2
.

2. The core of this m-nano flou set is ℏ1, ℏ5.

3. The attribute ℏ2 doesn’t affect the results.
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ℏ2ℏ4ℏ3,
ℏ1, ℏ5

Table 2: Comparison of boundary and accuracy between Jayalakshmi method [16] and the current method (Patient with Heart Attack) in
Definition 4.1 using Example 5.1. ( Case (1)).

X
Jayalakshmi method [16] Option (1) method Option (2) method

BℜX
(Υ) CℜX

(Υ) IBℜX
(Υ) CI

ℜX
(Υ) DBℜX

(Υ) CD
ℜX

(Υ)

P1 {♭1, ♭3, ♭4, ♭6} 1
3 {♭1, ♭3, ♭4, ♭6} 1

3 {♭1, ♭3} 1
2

P1 − {ℏ1} {♭1, ♭3, ♭4, ♭5, ♭6} 2
7 {♭1, ♭4, ♭5, ♭6} 3

7 {♭1, ♭3, ♭4, ♭5, ♭6} 2
7

P1 − {ℏ2} {♭1, ♭3, ♭4, ♭6} 1
3 {♭1, ♭3, ♭6} 2

5 ∅ 1

P1 − {ℏ3} {♭1, ♭3, ♭4, ♭6} 1
3 {♭1, ♭3, ♭4, ♭6} 1

3 {♭1, ♭3} 1
2

P1 − {ℏ4} {♭1, ♭3, ♭4, ♭6} 1
3 {♭1, ♭3, ♭4, ♭6} 1

3 {♭1, ♭3} 1
2

P1 − {ℏ5} {♭1, ♭3, ♭4, ♭5, ♭6} 2
7 {♭1, ♭3, ♭4, ♭5, ♭6} 2

7 {♭1, ♭3, ♭4, ♭5, ♭6} 2
7

Table 3: Comparison of boundary and accuracy between Jayalakshmi method [16] and the current method (Patient not with Heart Attack)
in Definition 4.1 using Example 5.1. ( Case (2)).

X
Jayalakshmi method [16] Option (1) method Option (2)method

BℜX
(Υ) CℜX

(Υ) IBℜX
(Υ) CI

ℜX
(Υ) DBℜX

(Υ) CD
ℜX

(Υ)

P1 {♭1, ♭3, ♭4, ♭6} 1
6 {♭1, ♭3} 2

3 {♭1, ♭3, ♭4, ♭6} 1
3

P1 − {ℏ1} {♭1, ♭3, ♭4, ♭5, ♭6} 1
6 {♭1, ♭3, ♭4, ♭5, ♭6} 1

6 {♭1, ♭4, ♭5, ♭6} 1
5

P1 − {ℏ2} {♭1, ♭3, ♭4, ♭6} 1
3 ∅ 1 {♭3, ♭6} 2

3

P1 − {ℏ3} {♭1, ♭3, ♭4, ♭6} 1
3 {♭1, ♭3} 2

3 {♭1, ♭3, ♭4, ♭6} 1
3

P1 − {ℏ4} {♭1, ♭3, ♭4, ♭6} 1
3 {♭1, ♭3} 2

3 {♭1, ♭3, ♭4, ♭6} 1
3

P1 − {ℏ5} {♭1, ♭3, ♭4, ♭5, ♭6, ♭7} 1
7 {♭1, ♭3, ♭4, ♭5, ♭6, ♭8} 1

6 {♭3, ♭4, ♭5, ♭6} 1
5

Based on our previous discussion, the present methodology proves to be more appropriate
when compared to the approach proposed by Jayalakshmi in 2017 [16]. This is supported by the
following findings we have established:

1. The factor ℏ5 holds the highest level of influence.

2. The factor ℏ2 demonstrates no discernible impact.

3. We have determined the relative significance of each key factor on the occurrence of "Heart
Attack".
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4. We have identified the key factors that exhibit an equivalent level of impact on "Heart At-
tack".

Remark 5.3. In the example, the tables (Table 2, Table 3) show cases the results of the analysis based on
the degree of crispness CI

ℜP1
(Υ) for each factor in the set P1. The remark specifically focuses on the vertical

comparison of CI
ℜP1−{ℏ}

(Υ) and CD
ℜP1−{ℏ}

(Υ) values, ∀ ℏ ∈ P1.

For instance, it is noted that CI
ℜP1

(Υ) is 2

3
in Table 3. However, when high blood pressure is removed

(deleted), the value decreases to 1
6
. This decrease in the degree of crispness suggests that High Blood Pressure

is a significant key factor affecting "Heart Attack".

Observation:

Based on the information presented in the previous tables (Table 2, Table 3), we can observe
the relative order of the key factors’ effects on Heart Attack. The order of influence, from the most
significant to the least significant, is as follows: Family history, high blood pressure, diabetics,
stress and strain, and finally alcohol and smoking.

This observation suggests that family history has the strongest influence on the occurrence
of "Heart Attack", followed by high blood pressure, diabetics, stress and strain, and alcohol and
smoking, which has the least discernible impact. By comparing the degree of crispness for each
factor, we can determine the relative importance and contribution of these factors towards the
occurrence of Heart Attack. Family history emerges as the most influential factor, while alcohol
and smoking exhibit minimal or negligible influence.

This rephrasing summarizes the relative order of influence of the key factors on "Heart At-
tack" based on the analysis performed using the nano increasing (decreasing) topological space
approach.

6 Conclusion

Rough set theory, originally introduced by Pawlak [30], has laid the fundamental groundwork
for advancing data analysis in diverse fields. Building upon this foundation, our research intro-
duces a novel dimension through the utilization of nano ordered topological spaces. In doing
so, we extend the work of Lellis and Thivagar on nano topological spaces [35] and incorporate
insights from Jayalakshmi’s illuminating case study [16]. Together, these contributions have en-
abled us to gain a deeper understanding of the risk factors associated with heart failure, including
high blood pressure, family history, and increased stress.

It is essential to acknowledge certain limitations that have shaped our research journey. Fore-
most among these is the constraint imposed by the size of our research sample. While our findings
are promising and conceptually sound, they are based on a relatively limited dataset. Expanding
our investigations to encompass a more extensive and diverse range of cases would bolster the
robustness of our conclusions.

Additionally, our work is rooted in the development and formalism of our extended rough set
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model. Its real-world application to extensive medical datasets is an area ripe for future explo-
ration. To truly gauge the practical benefits and utility of our model, comprehensive empirical
studies and clinical validations are imperative. The potential for our research to evolve and make
a lasting impact is substantial. As we look ahead, several avenues for future work emerge:

Conducting extensive empirical studies on larger and more varied medical datasets can sub-
stantiate the practical benefits of our extended rough set model. Real-world validation is a crucial
step toward translating theoretical advancements into tangible clinical applications.

Future research can delve deeper into fine-tuning the parameters of our novel constructs, such
as nano ordered topological spaces. Optimization for specific medical contexts can enhance the
precision of our analytical methodologies.

The integration of our model with artificial intelligence techniques, including machine learn-
ing and deep learning, holds great promise. Such integration can lead to further improvements
in predictive accuracy for heart failure diagnosis and prognosis. Collaborations with healthcare
institutions and clinicians to conduct clinical trials can provide invaluable insights into the practi-
cal utility of our methodology. These trials can also guide the customization of our model to meet
the needs of the medical community.

Expanding the scope of our research to encompass interdisciplinary collaborations can lead to
innovative approaches in addressing heart failure, leveraging expertise from genetics, cardiology,
data science, and beyond. In future work, we plan to explore applications in decision-making by
utilizing the properties of nano bi-ordered topological space.
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